¿Qué tienen que ver las matemáticas con la moda?

Derek Wells Cristina Sardón

9 sept 2021

FLIS® Moda. Diseño de Moda

Para los amantes de las matemáticas, no hacen falta más explicaciones: las matemáticas subyacen en las disciplinas más impredecibles. La divulgación científica se ha encargado de relatar la relación entre las matemáticas y otras materias, abriendo los ojos de los detractores de esta ciencia exacta. Yo misma me he ocupado de contar la relación entre el arte y las matemáticas, la música y las matemáticas, y hasta las matemáticas del ballet clásico.


Hoy me he propuesto llegar a los confines de las aplicaciones de esta bella ciencia formal, describiendo matemáticamente el corte, la confección y el arte de vestir un traje, porque soy una nerd de las matemáticas, y porque me encanta la moda.



Conceptos básicos: proporciones lineales y angulares


¿Qué es la proporción sino una de las bases matemáticas más arraigadas? La palabra moda viene del latín modus, que significa medida. Para confeccionar un traje necesitamos medir, como en matemáticas.

Desde la escuela primaria nos enseñan a medir en los espacios más sencillos, en los denominados espacios euclídeos, mediante unos ejes cartesianos. Ahí pintamos vectores, sabemos cuánto miden cuantificando su norma, etc.

En la confección, medimos de una manera similar: contamos una medida lineal para determinar el largo de una manga, una medida superficial para determinar la parte frontal de una camisa, por ejemplo, y una medida volumétrica para añadir la capacidad o distancia entre pecho y espalda.

El paralelismo y la perpendicularidad son conceptos claves en el patronaje, y también las medidas angulares. Una herramienta muy específica en la creación del patrón es la llamada regla francesa, integrada en el diseño de las curvas de la cadera, en los escotes, cabezas de manga, en el tiro de los pantalones, etc.


La regla francesa está inspirada en una curva matemática denominada clotoide, que es una curva tangente al eje X en el origen y cuyo radio de curvatura disminuye de forma inversamente proporcional a la distancia recorrida sobre la propia curva. En el origen de la curva, el radio es infinito, y a mayor distancia, el radio se achica.



La ciencia del nudo de corbata


Las matemáticas van incluso más allá del proceso de patronaje: también tienen su papel fundamental en la forma de vestir con estilo. En el libro 85 maneras de hacer un nudo de corbata: la ciencia y la estética de los nudos de corbata, escrito por Thomas Fink y Yong Mao, se describe la matemática detrás de un nudo de corbata.


Ya lo había hecho antes Honoré de Balzac en el siglo XIX, en su libro “El arte de atarse la corbata”, pero incluyendo sólo 22 maneras de atar el nudo. Más recientemente, el grupo de matemáticos suecos dirigido por Mikael Vejdemo-Johansson calculó 266 682 posibilidades de anudar una corbata, incluyendo el extremo delgado de la corbata en el nudo, una tendencia de los últimos años. Desafortunadamente, la gran mayoría de estos nudos no son nada prácticos.


El artículo completo se encuentra en la revista FLIS® Moda y Derecho al Día 7/2020.

Puedes conocer el contenido de la revista en el siguiente link.